最近推出的热集成技术已经了解并改善变推理(VI),提供了一个新的框架。在这项工作中,我们提出了热力学变目标(TVO)的仔细分析,弥合现有的变分目标和脱落的新见解,以推动该领域的差距。特别是,我们阐明了如何将TVO自然连接三个关键变方案,即重要性加权VI,仁义-VI,和MCMC-VI,它包含了最VI目标在实践中采用。为了解释理论和实践之间的性能差距,我们揭示热力学曲线的病理几何形状是如何产生负面影响TVO。通过推广加权平均持有人从几何平均值的整合路径,我们扩展TVO的理论和发现提高VI新的机遇。这促使我们的新VI的目标,命名为持有人的边界,这拼合热力学曲线和承诺,以实现精确的边缘数似然的一步逼近。提供对数字估计的选择的全面讨论。我们目前的合成和真实世界的数据集强有力的实证证据来支持我们的要求。
translated by 谷歌翻译
Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component.
translated by 谷歌翻译
为了解决培训和测试数据之间的分布变化,域的概括(DG)利用多个源域来学习一个概括地看不见域的模型。但是,现有的DG方法通常遭受过度适应源域的影响,部分原因是特征空间中预期区域的覆盖率有限。在此激励的情况下,我们建议与数据插值和外推进行混合,以涵盖潜在的看不见区域。为了防止不受约束的外推的有害影响,我们仔细设计了一种策略来生成实例权重,名为Flatents-Awarnement-Awarnement-Awarnement-Awarness-Angients-Awments-Altents-Altents-Alignness-Actient-Actient-Actient-Actient-Actient-Actient-natments-Actient-Actient-Actient-natments-naterment-Actient-naterment-naterments-awite渐变的混音(FGMIX)。该政策采用基于梯度的相似性,将更大的权重分配给携带更多不变信息的实例,并了解相似性的功能,以提高最小值以更好地概括。在域基准测试中,我们验证了FGMIX各种设计的功效,并证明了其优于其他DG算法。
translated by 谷歌翻译
知识蒸馏(KD)显示了其对象检测的有效性,在AI知识(教师检测器)和人类知识(人类专家)的监督下,它在该物体检测中训练紧凑的对象检测器。但是,现有研究一致地对待AI知识和人类知识,并在学习过程中采用统一的数据增强策略,这将导致对多尺度对象的学习有偏见,并且对教师探测器的学习不足,从而导致不满意的蒸馏性能。为了解决这些问题,我们提出了特定于样本的数据增强和对抗性功能增强。首先,为了减轻多尺度对象产生的影响,我们根据傅立叶角度的观察结果提出了自适应数据增强。其次,我们提出了一种基于对抗性示例的功能增强方法,以更好地模仿AI知识以弥补教师探测器的信息不足。此外,我们提出的方法是统一的,并且很容易扩展到其他KD方法。广泛的实验证明了我们的框架的有效性,并在一阶段和两阶段探测器中提高了最先进方法的性能,最多可以带来0.5 MAP的增长。
translated by 谷歌翻译
后门学习是研究深神经网络(DNNS)脆弱性的一个新兴而重要的话题。在快速武器竞赛的地位上,正在连续或同时提出许多开创性的后门攻击和防御方法。但是,我们发现对新方法的评估通常是不可思议的,以验证其主张和实际绩效,这主要是由于快速发展,不同的环境以及实施和可重复性的困难。没有彻底的评估和比较,很难跟踪当前的进度并设计文献的未来发展路线图。为了减轻这一困境,我们建立了一个名为Backdoorbench的后门学习的全面基准。它由一个可扩展的基于模块化的代码库(当前包括8个最先进(SOTA)攻击和9种SOTA防御算法的实现),以及完整的后门学习的标准化协议。我们还基于5个模型和4个数据集,对9个防御措施的每对8次攻击进行全面评估,总共8,000对评估。我们从不同的角度进一步介绍了对这8,000次评估的不同角度,研究了对国防算法,中毒比率,模型和数据集对后门学习的影响。 \ url {https://backdoorbench.github.io}公开获得了Backdoorbench的所有代码和评估。
translated by 谷歌翻译
我们提出了直接同时的语音转换(SIMUL-S2ST)模型,此外,翻译的产生与中间文本表示无关。我们的方法利用了最近与离散单位直接语音转换的最新进展,其中从模型中预测了一系列离散表示,而不是连续频谱图特征,而不是以无监督的方式学习,并直接传递给语音的声码器综合在一起。我们还介绍了变分单调的多口语注意力(V-MMA),以处理语音同声翻译中效率低效的政策学习的挑战。然后,同时策略在源语音特征和目标离散单元上运行。我们开展实证研究,比较级联和直接方法对Fisher西班牙语 - 英语和必需的英语西班牙语数据集。直接同步模型显示通过在翻译质量和延迟之间实现更好的权衡来优于级联模型。
translated by 谷歌翻译
语音到语音翻译(S2ST)将输入语音转换为另一种语言。实时交付S2ST的挑战是翻译和语音合成模块之间的累积延迟。尽管最近增量的文本到语音(ITTS)模型已显示出巨大的质量改进,但它们通常需要其他未来的文本输入才能达到最佳性能。在这项工作中,我们通过调整上游语音翻译器来为语音合成器生成高质量的伪lookahead来最大程度地减少ITT的最初等待时间。缓解初始延迟后,我们证明了合成语音的持续时间在延迟中也起着至关重要的作用。我们将其形式化为延迟度量,然后提出一种简单而有效的持续时间缩放方法,以减少延迟。我们的方法始终将延迟减少0.2-0.5秒,而无需牺牲语音翻译质量。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译